
FINAL REPORT

Life Cycle Assessment of Nano-enabled Products and Devices for their Safe and
Rapid Development

Cooperative Agreement Number: W912HZ-19-SOI-0028

Thomas P Seager, Paul Westerhoff, co-PIs

School of Sustainable Engineering & the Built Environment
Arizona State University, Tempe AZ

Summary

Assement of life-cycle environmental impacts during the development of novel technoligies may

help reorient research along trajectories that mitigate or minimize unintended deleterious

consequences. Earlier assessment affords greater developmental flexibility, but also presents

increasingly difficult challenges with regard to data availability, reliablity, and management of

uncertainty. While traditional methods of environmental life cycle assessment (LCA) are of

limited applicability, anticipatory LCA is a relatively new analytical method for exploring and

prioritizing uncertainties with regard to technology research and development.

Existing approaches to anticipatory LCA rely on computationally intense Monte Carlo simulation

of data uncertainties to identify those that are either: 1) most decision-relevant, and/or 2) high

priorities for research-based uncertainty reductions.

There are no commercial software packages that execute anticipatory LCA computations.

Rather, existing studies have been supported by custom software solutions, typically developed

within academic or government research groups. Among the most sophisticated of these is

called FELCI, developed by the US Army Corp of Engineers Engineer Research & Development

Center (ERDC). Programmed in the language R, FELCI calls on a popular open-source Excel-

based software model called USEtox made available thru usetox.org by the Technical University

of Denmark (Fantke et al. 2017).

USEtox represents the state-of-the-art model for estimating characterization factors of unknown

compounds, such as nano-structured materials. However, USEtox relies on point estimates,

rather than probability distributions. FELCI operates by populating USEtox with information

about uncertainty, simulating hundreds or thousands of Monte Carlo trials, collecting the output

data from USEtox, and integrating it with research cost information supplied by expert users to

graphically explore efficient frontiers between budget and hypothetical uncertainty reductions.

Thus, FELCI may be a powerful tool for evaluating competing research agendas.

The current challenge facing FELCI users is the long computational time required to run multiple

Monte Carlo trials, which presents an obstacle to testing different research scenarios. This

project investigated the computational bottlenecks associated with FELCI and reprogrammed a

new version in Python called PyFELCI that is computationally more efficient. Despite faster

speeds resulting from multi-core processing, PyFELCI operates in the same way as FELCI – as

an external shell for controlling USETox and collecting data output. Therefore, it is subject to

the same computational bottlenecks – namely, read/write latency and execution of the extensive

Excel macros on which USETox relies.

There are Excel plug-ins that speed Monte Carlo and uncertainty analysis. For example, Oracle

provides a plug-in called Crystal Ball, that carries out rapid exploration of probability distribution

functions. However, implementing Excel plug-ins to execute USEtox is problematic for two

reasons: 1) the extensive macros on which USEtox depends make plug-ins like Crystal Ball

impractical, and 2) security concerns related to plug-ins prohibit use in enterprise computing

environments like the Department of Defense and public universities.

This project has developed a Python-based code called PyFELCI. To foster adoption and

further development of new tools for advancing and automating methods of anticipatory LCA,

PyFELCI can be made freely downloadable and open source in two versions: 1) a US Army

Corp ERDC version available on a secure file-sharing server approved for DoD use, and 2) a

public version hosted on a box.com server open to anyone with the link.

Installation instructions for the public version are listed in Appendix A.

Introduction

The effective deployment of nanomaterial-enabled technologies could enable breakthroughs in

energy storage, communications, environmental treatment, and myriad other technologies.

Nonetheless, the potential application of nanomaterials must be weighed against the potential

implications, because the environmental uncertainties associated with nanomaterials are

extraordinarily high. In particular, the characterization factors required by LCA that translate

environmental releases to impacts are largely unknown for novel nanomaterials, and these

unknowns can create considerable uncertainty that is expensive to resolve using traditional

laboratory toxicological assays.

Recent advances in anticipatory life cycle assessment (LCA) have enabled researchers to

identify opportunities to steer the developmental trajectory of nanomaterial technologies towards

environmentally preferable pathways by exploring and prioritizing uncertainties in environmental

assessment (e.g., van der Giesen, Coen, et al. 2020). For example, USEtox is an Excel-based

program that estimates characterization factors from physio-chemical quantities -- e.g., octanol-

water partition coefficients. However, USEtox works exclusively with point-estimates, thereby

complicating exploration of uncertainty and frustrating global sensitivity analysis.

To overcome limitations of USEtox for identifying critical uncertainties and sensitivities,

researchers at ERDC created a computer program in R called FELCI to automate Monte Carlo

analysis by populating multiple instances of USEtox with samplings from user-specified

probability distributions of uncertain physio-chemical parameters. Ideally, this exploration allows

identification of those uncertainties that are most relevant to a broader LCA, so that they might

be prioritized for experimental investigation.

The problem is that FELCI is computationally inefficient. It requires long run times to create the

minimum number of simulations required for informative exploration of typical probability

distributions. Although Excel-add-ons like Crystal Ball can speed Monte Carlo simulation in

simpler spreadsheets, USEtox makes extensive use of macros that interfere with simulations,

and complicate export of data for production of custom figures utilized in FELCI.

This document describes the PyFELCI software tools designed to speed computations essential

for anticipatory LCA. These tools are made available in two locations: 1) A Python application

called PyFELCI suitable for installation on USACE ERDC computers that applies multi-core

processing to speed execution of Monte Carlo trials in USEtox and made available on DoD

approved file sharing servers, and 2) a second copy posted on publicly accessible servers

hosted by box.com.

PyFELCI Testing
To reduce the time taken for simulations, a multiprocessing Python application that reconstructs

the ERDC software called FELCI (originally written in R) has been developed under a

cooperative agreement between ASU and ERDC. This new application, called PyFELCI, uses

multiple instances of USEtox running in parallel to deploy unused computational resources, and

then merges the results of all the parallel simulations. The advantages of this multiprocessing

approach depend upon the specific of each machine, including number of cores. For example,

experimenting on a machine with 8 cores reveals that dedicating 6 cores to USEtox captures all

available time savings.

Objective

The objective of this report is to show that PyFELCI application delivers same results as of

FELCI application in less time.

Procedure

The Python application (PyFELCI) is tested against the original FELCI using identical inputs, in

two scenarios: 1) a default input vector, and 2) randomly selected input values. The

computation times and graphical results are then compared to assess consistency. For this

purpose, several experiments were executed and typical results reported here.

PyFELCI Time Performance

Time utilization for 100 simulations:

USEtox

Instance

Total Time

(min)

Time per sim

(sec)

Note

4 26.65 15.99 Slow

6 24.45 14.67 Decent time: balance of time and resource

utilization

8 24.43 14.65 Better time, but heavy resource utilization

Note: Actual FELCI takes 30.18 min for 100 simulations

Machine specs: intel - i7 core, 1.80GHz, 16 GB of RAM, 500GB SSD.

Results

To compare the results, the graphs produced in the results folder by both applications for each

experiment are displayed below. The pattern observed was similar in all the graphs, even

though a difference in scale could be found between them. Small differences between the

results generated by FELCI and PyFELCI result from differences in stochastic sampling of

identical probability distributions. Reliable results of 100 simulations show comparable overall

patterns, without replicating exact datasets.

Direct comparison using identical default inputs

Value of Information Analysis. FELCI adds capabilities for prioritizing research projects that

are not embedded in USEtox. The first of these is value-of-informaton (VOI) analysis that seeks

to narrow uncertainty of results through experimental research that is hypothesized to decrease

the range of probability distributons. Research experiments that are highest priority are those

that are hypothesized to reduce uncertainties the most (e.g., Wender et al. 2018). Because the

propogation of data uncertainties through life cycle assessment models like USEtox is complex,

Monte Carlo simulation is necessary to inform experts regarding which experiments are most

efficient for increasing confidence in the overall environmental portential of new technologies. In

the figures below, FELCI results are on the left and PyFELCI results are on the right. Using

identical inputs, the graphs show the same overall pattern of result, and identify comparable

efficiency frontiers.

Figure 1. FELCI results (left) and PyFELCI (right) display comparable value-of-information results.

Research Portfolio Rankings. Because research is an inherently uncertain process,

prioritizing among different projects requires direct comparison of the value of proposed

projects. Highest ranked projects are those likely to generate efficient increases in information.

FELCI (left) displays a stack-ranking of research project preferences, and their stability as the

number of Monte Carlo trials increases. PyFELCI results in comparable rank-orderings, with

improving comparison at larger numbers of simulations.

Figure 2. FELCI results (left) and comparable to PyFELCI results (right) in stack-ranking hypothetical research

portfolios.

Figure 2 establishes the stability of the optimal research porfolio rankings at different numbers

of Monte Carlo simulations. The portfolios represent different combinations of experimental test

results that narrow uncertainty in the physical parameters that constitute USETox inputs.

Optimal portfolios (top row) are those represented by red dots in Figure 1. These are the

experimental tests that lie along frontier of least mean error and least additional testing costs.

The bottom row of Figure 2 depicts all dots – white and red – represented in Figure 1.

Evaluating the stability of the research portfolio rankings allows assessment of the minimum

number of simulations necessary to reach reliable results. Because of the nature of Monte

Carlo sampling, random variations will fail to produce reliable results when the number of

samplings is too low. In this case, the critical output is the relative ranking of the research

portfolios, rather than the mean error estimated for each. As a consequence, stable results in

relative ranking can be obtained with fewer simulations than might otherwise be necessary for

results to converge on absolute estimates of mean error. In the example given in Figure 2, the

top three research portfolios are identifiable in fewer than 5 simulations, obviating the need to

expend additional time and computational resources to compute additional simulations. Thus,

much faster results can be obtained with confidence when the minimum number of simulations

is established by the results depicted in Figure 2.

Direct comparison using identical randomly selected inputs

While comparison of FELCI and PyFELCI yields good results using a vector of default inputs

(previous section), to investigate whether good comparison is stable over a wider range of input

parameters, we compared results using randomly selected inputs.

Value of information. In Figure 3 below, FELCI results are on the left, while PyFELCI are

reported on the right. Differences in scale distort visual interpretations of the results.

Nonetheless, the same efficient frontier emerges in both instances, showing that optimal

experiments exhibit decreasing returns in uncertainty reductions, with respec to increasing

costs.

Figure 3. Randomly selected input vectors reveal that comparable results are robust across a wide range of

parameters. FELCI results on the left, PyFELCI on the right.

Research Portfolio Rankings. Stable research portfolio rankings emerge between 20-30

simulations in both FELCI (left) and PyFELCI (right).

Figure 4. Using randomly selected input vectors, direct comparison of FELCI (left) and PyFELCI (right) results in

comparable and stable research portfolio rankings after approximately 30 simulations.

PyFELCI Conclusions

PyFELCI delivers results comparable to FELCI in 30% less computational time.

References

Eckelman MJ, Mauter MS, Isaacs JA, Elimelech M. “New perspectives on nanomaterial aquatic
ecotoxicity: Production impacts exceed direct exposure impacts for carbon nanotubes”
Environmental Science & Technology. 46 (2012):2902-2910.

Fantke, P, et al. "USEtox® 2.0 Documentation (Version 1.00)." (2017).
https://orbit.dtu.dk/en/publications/usetox-20-documentation-version-100

van der Giesen, Coen, et al. "A critical view on the current application of LCA for new
technologies and recommendations for improved practice." Journal of Cleaner Production 259
(2020): 120904.

Wender, BA., et al. "Sensitivity-based research prioritization through stochastic characterization

modeling." The International Journal of Life Cycle Assessment 23.2 (2018): 324-332.

Case Study 1: Niacinamide

Among the first studies to employ Monte Carlo exploration of data uncertainties in USETox for

the estimation of characterization factors in environmental life cycle assessment (LCA) of novel

materials is Wender et al. (2018). Their approach identified critical contributors to uncertainty in

the aquatic ecotoxicity characterization factors for niacinamide, a topical antioxidant, by

automating Monte Carlo sampling of uncertain chemical parameters from user-defined

probability distribution functions, and aggregating the USETox results. Comparative

examination of Spearman rank correlations between sampled input parameters and variation in

the resulting characterization factors allowed identification of those input uncertainties that make

the greatest contribution to eventual uncertainty in the USETox results. Thus, the Wender et al.

study established a scientific basis for prioritizing new research for reducing uncertainties in

LCA of novel materials.

Although the Wender et al. study was an important intellectual antecedent to FELCI, it did not

consider experimental costs. The principal contribution of the FELCI software was to add two

additional dimensions to evaluation of research portfolios (i.e., combinations of experiment): 1)

cost, and 2) BA level. With FELCI, research managers can explore the frontier of optimal trade-

offs between scientific merit (measured by reduction of uncertainty) and experimental cost.

Finally, the principal contribution of PyFELCI is to speed the same computations made by

FELCI by enabling multi-core processing capabilities in Python. The additional speed, along

with progress bars that estimate total time to completion, allow research managers to iterate on

different scenarios or ideas, using the results of one run to inform the direction of new

explorations.

To demonstrate the utility of PyFELCI and facilitate its use in new applications, this case study

provides step-by-step instructions that recreate the niacinamide example, so that users can test

their understanding of PyFELCI input and output screens prior to designing their own

investigations.

Operating PyFELCI for Niacinamide

Open PyFELCI

Figure 5. To run PyFELCI, double click the pyfelci_run batch file.

After installing PyFELCI (see Appendix A), open the pyfelci_run batch file found in the ‘>Server’

subdirectory (Figure 5).

Values

Figure 6. Known chemical characteristics for niacinamide are entered as point estimates in the PyFELCI Chemical

tab, leaving other values blank.

There are several chemical characteristics of niacinamide that are known, such as molecular

weight. Enter the known chemical characteristics in the PyFELCI ‘Values’ tab, as show in

Figure 6. Leave unknown values blank. These will be specified on the ‘Distributions’ tab.

Distributions

Figure 7. Specify unknown chemical characteristics as probability density functions using the ‘Distributions’ tab.

Unknown chemical characteristics must be entered as probability density functions (PDF).

PyFELCI allows a variety of different PDF shapes, including uniform, triangular, normal, and log-

normal.

For each unknown parameter, specify the shape of the PDF and the parameters that

characterize that shape. For example, in the screen below, nothing is known about the pKa

characteristics of niacinamide. Therefore, the shape of the PDF selected is uniform. Minimum

and maximum values are specified as 0 and 14, respectively, because these represent the

extreme limits of possible pKa values. In this case, the uncertainty in pKa is extreme.

By contrast, other PDFs are specified as lognormal, and parameterized with the mean and

standard deviation of the log of the PDF.

Cost

Figure 8. Enter the cost to experimentally determine more precise estimates of the uncertain chemical

characteristics.

In this example, we have no special insight into the experimental cost of determining more

precise values of the unknown values. Although the unique contribution of PyFELCI is its ability

to compare the value of experimental information with its experimental cost, the arbitrary values

we input into PyFELCI in this example serve only to illustrate this capacity. Users may input

their own values, and interpret the results accordingly. Note that the only prompts on the ‘Cost’

tab (Figure 8) are those that were specified earlier as probability distributions, as known point

values specified on the ‘Values’ tab require no further experimental investment.

BA Level

Figure 9. Enter any other numerical prioritization levels on the ‘BA Level’ tab.

Because cost may not be the only system of determining experimental priorities, PyFELCI

allows a second approach to investigating value of information tradeoffs on the ‘BA Level’ tab

(Figure 9). The units allowable on this screen accommodate any numerical scale the user

applies, although in this example we will not revisit the BA Level during consideration of the

results.

Budget

Figure 10. Enter a total experimental budget on the ‘Budget’ tab.

One of the advantages of PyFELCI is its capacity to compare accumulated costs of various

experimental combinations (called ‘research portfolios’) to an overall budget number (Figure

10), facilitating optimal investment of available funds. Additionally, PyFELCI will show any gains

in value of information that are available at expenditure levels above the specified figure, which

may fortify internal arguments for upward budget adjustments where larges gains in information

can be had.

Run (Simulations)

Figure 11. Enter an integer corresponding to the number of Monte Carlo simulations to run in USETox.

PyFELCI allows users to specify the number of simulations to explore within USTETox. A larger

number of simulations will take longer to run, but result in more stable results (with fewer

random variations). In this example (Figure 11), we run only 10 simulations to minimize

computation time. Later, we can check for stability of the results in the ranking of the research

portfolios after only 10 simulations and decide to rerun results at fewer or more simulations.

Run-time feedback

Figure 12. The operations of the pyfelci_run batch files are printed in a command dialog box to facilitate

troubleshooting. Under ordinary circumstances, these dialog boxes can be ignored.

PyFELCI adds several indicators of progress that were absent in FELCI, including a command

line dialog bopx (Figure 12) and different representations of progress bars. These assist the

user in planning their time during longer runs requiring additional simulations.

Value of Information Outputs

Figure 13. Value of information results are presented in two ways. The first (left) compares reduction in uncertainties

relative to the total number of experiments required, while the second (right) compares to the cost of experiments.

The value of information results for niacinamide are presented relative to the number of

experiments required to reduce uncertainty (Figure 13, left) and the cost of those experiments

(Figure 13, right). The red dots represent the frontier of optimal (i.e., “non-dominated”) choices.

In this case, just one experiment reduces uncertainty, as measured by the mean error of the

resulting distribution of characterization factors produced by USETox, by more than a third, and

two experiments result in near certainty. No further benefit is derived from three experiments,

as error has already been so greatly reduced. Moreover, the recommended experiments can

be accomplished for far less than the budget available.

Stability

Figure 14. PyFELCI represents the stability of rankings in two ways. On the left are the rankings of all possible

combinations of experiments (i.e., research portfolios), including sub-optimal (or dominated) choices. On the right,

the sub-optimal portfolios are removed to show the stability of just the non-dominated options represented by red

dots in the Value of Information graphs.

The nature of Monte Carlo sampling introduces the possibility that results are an artifact of

random sampling, rather than a robust and reliable representation of uncertainty. As the

number of simulations increases, both computational requirements and reliability of results

increase – to a point. After reliability is already established, additional simulations only

lengthens run times. Therefore, it is advantageous to run the fewest number of simulations that

yield reliable results. Fortunately, the absolute estimates of mean error are unimportant

compared to the relative ranking of the research portfolios. Because relative ranking can be

established in fewer simulations than reliable estimates of mean error, PyFELCI can operate

well with fewer simulations than is typical of most Monte Carlo simulations – speeding the time

to obtain results. In this case, the top two research portfolios are reliably established in the first

simulation, and remain constant even as the simulations increase. The correct inference is that

the results in Figure 13 are reliable and repeatable, and no further simulations are required to

minimize random samplings errors.

Recommendations

Figure 14. The recommended experiments are tabulated in combinations called research portfolios. The columns

correspond to the experimental investigations, wherein a value of “1” indicates that the experiment in that column

belongs to the research portfolio in that row. In this case, the optimal combination of two experiments is research

portfolio #7, which combines testing for pKa.gain and pKa.loss. Adding Kdoc to the portfolio (#8) results in a

miniscule improvement in mean error.

While the red dots represent the optimal frontier identifying the experimental combinations that

most reduce uncertainty for least cost, the figures alone do not name the experiments. To

extract recommendations from the results, it is necessary to interpret the data tabulated in

Figure 14.

Each column represents an experimental investigation. PyFELCI constructs portfolios by

testing the experiments individually, and in combination. For example, portfolio #1 shows the

uncertainty without any new experimental investigations, and #2 presents the Mean Error

results when only Kdoc is established experimentally. In this case, the reduction to Mean Error

is miniscule when Kdoc is investigated alone.

A value of “1.0” under the column header corresponding to each experiment indicates that

experiment is included in the research portfolio corresponding to that row, whereas a value of

“0.0” indicates that it is excluded.

Hypothetically, the massive uncertainty in pKa.gain and pKa.loss, originally entered in the

‘Distribution’ tab as a uniform distribution between 0 and 14 could be determined experimentally

in the lab. These results indicate that these pKa parameters are the principal contributor to

uncertainty in the characterization factor for niacinamide estimated by USETox, and that

research portfolio #7 that combines testing of both pKa.gain and pKa.loss results in a massive

reduction of Mean Error and a cost of $11,000.

Case Study 2: Carbon Nanotubes

Nanomaterials are among the most vexing to assess from an environmental life-cycle

perspective. The wide variety of chemical and structural alternatives available makes possible a

myriad of unique materials that may perform in surprising ways. Therefore, it may be

advantageous to employ USETox via PyFELCI to prioritize new experimental investigations

when developing novel nanomaterials.

The second case study investigates carbon nanotube characterization factors, following the

examples given by Eckelman et al. (2012).

Open PyFELCI in the same way as the previous case study.

Values

Figure 15. Enter known information in the ‘Values’ tab. The carbon nanotube case study involves less known

information than niacinamide, which means that there are additional blanks to fill in as distributions on the next

screen.

Distributions

Figure 16. Unknown chemical characteristics are specified as probability density functions on the ‘Distributions’ tab.

The pKa.gain and pKa.loss are given as uniform distributions, while all others are specified as log normal, from

values given in Eckelmen et al. (2012).

Cost

Figure 17. Enter the estimated cost of laboratory determination of unknown chemical characteristics.

BA Level

Figure 18. As in the niacinamide case study, BA Levels refer to internal, non-budgetary priorities. The values listed

here are arbitrary.

Budget

Figure 19. Enter a total laboratory experimental budget, to facilitate planning.

Run (Simulations)

Figure 20. Enter 10 simulations to speed computations, then check the results for stability when PyFELCI is

complete.

Run-time feedback

Figure 21. PyFELCI provides runtime information in an open dialog box, as well as two types of progress bars.

Value of Information Outputs

Figure 22. Compared to the niacinamide case study, the CNT case study results are more complicated, due to the

greater number of unknowns.

Results in Figure 22 (left) indicate that proper selection of just one experiment results in a 75%

reduction in mean error, as evidenced by the red dot corresponding to the point (1, 1000).

Several inferior options are also available, some of which fail to reduce error at all. Both value

of information representations show that optimal selection of experimental effort will conserve

resources, and that diminishing returns exist after about 3 or 4 experiments.

Stability

Figure 23. The first two research portfolio rankings are stable for all simulations, 1-10. However, some rank reversal

is evident in the third or fourth best research portfolios (right) represented by red dots in Figure 22.

Recommendations

Figure 24. Over one hundred different research portfolios are tested in the CNT case study.

In the CNT case, large reductions in uncertainty can be obtained from four or fewer

experimental results, after which diminishing returns set in. Inspection of the ‘Frontier Cost’

column guides the reader towards those portfolios that lie along the optimum information/cost

frontier, which are indicated with a “1”. For example, research portfolio #4 (line 29, Figure 24)

tests only Kdoc and avglogEC50, and obtains over 80% of available error reduction. Adding

pKa.gain and pKa.loss (research portfolio #100, line 97 in Figure 24) further reduces errors to

the point at which they can hardly be reduced further.

APPENDIX A

PyFELCI Installation & Testing Instructions

Introduction

The PyFELCI tool is developed in Python and uses an open-source framework WinPython to

make it a portable application.

To prepare your machine to run PyFELCI, first close all instances of Excel. Other open

workbooks may interfere with the running of USEtox.

Step-by-Step Instructions:

1) Download the PyFELCI.rar file from box.com at:

https://app.box.com/file/808401523528?s=2sl7iqq7f8udt02agi5os1e1prq1krjc

2) Extract the folder file PyFELCI (suggested software: WinRARhttps://www.win-

rar.com/download.html?&L=0)

3) Go to folder FELCI -> Server

4) Double click on the pyfelci_run.bat file.

5) Then open http://127.0.0.1:5000/ either on Google Chrome or Microsoft Edge. (This was

successfully tested on both).

6) Fill each tab with the appropriate values and then start the simulations. In the below

steps we see an example run for 100 simulations. Fill the below values in each tab.

7) Chemical Tab: select “Organic” for Chem Type 1 and “Amphoter” for Chem Type 2.

Then press Next.

8) Values Tab: PyFELCI does not have the ability to deliver error messages when values

are entered incorrectly. For this reason, it is important to input values in a format that can

be parsed by Excel. For instance, “E” notation will work. That is, if the user wishes to

efficiently input 1.25x1019, the user could enter 1.25E19. Invalid syntax in data entry will

cause the USEtox Excel spreadsheet to stop working with no error function passed to

the user and the computer will most likely need to be restarted for the app to function

properly. For instance, the following values will successfully be interpreted by the app:

http://127.0.0.1:5000/

Parameter Input Value

mw 10000

pKa.gain 7.2

pKa.loss No input value

Kow 10000

Koc No input value

Kh25c 1.00E-07

Pvap25 No input value

Sol25 1.00E+05

Kdoc 200

kdegA No input value

kdegW 1.00E-15

kdegSd 1.00E-18

kdegSI No input value

avlogEC50 0.5

9) Distributions Tab: Accept the 5 defaults without making any changes.

10) Costs Tab: Accept the 5 defaults without making any changes.

11) BA Level Tab: Accept the 5 defaults without making any changes.

12) Budget Tab: Input 40000, which ends up being about 75% of the total cost of testing all

unknowns.

13) Run Tab: To finish this example, the user then clicks to the final <Run> tab, leaves it on

100 simulations, and presses “Run VOI Analysis”.

Saving Results

Completing all simulations may require 20 seconds per simulation or more. For example, 1000

simulations may require 20,000 seconds, or between five and six hours. After completing all the

simulations, the results will pop up on your screen and be saved to a folder: PyFELCI->FELCI-

>Server->app->results.

On computers that do not allow creation of new folders, the plots that appear at the end of the

simulations will show up as pop-up windows so that users may save them in the location of

choice. These plots would include:

• Vol Portfolio Analysis (USEtox Uncertainty vs Additional Tests Performed)

• Vol Portfolio Analysis (USEtox Uncertainty vs Cost of Additional Testing)

• Ranking – All Portfolios (Ranking vs Simulations)

• Ranking – Optimal Testing Portfolios (Ranking vs Simulations)

