
FINAL REPORT 
 

Life Cycle Assessment of Nano-enabled Products and Devices for their Safe and 
Rapid Development 

 
Cooperative Agreement Number: W912HZ-19-SOI-0028 

 
Thomas P Seager, Paul Westerhoff, co-PIs 

School of Sustainable Engineering & the Built Environment 
Arizona State University, Tempe AZ 

Summary 

Assement of life-cycle environmental impacts during the development of novel technoligies may 

help reorient research along trajectories that mitigate or minimize unintended deleterious 

consequences.  Earlier assessment affords greater developmental flexibility, but also presents 

increasingly difficult challenges with regard to data availability, reliablity, and management of 

uncertainty.  While traditional methods of environmental life cycle assessment (LCA) are of 

limited applicability, anticipatory LCA is a relatively new analytical method for exploring and 

prioritizing uncertainties with regard to technology research and development.   

Existing approaches to anticipatory LCA rely on computationally intense Monte Carlo simulation 

of data uncertainties to identify those that are either: 1) most decision-relevant, and/or 2) high 

priorities for research-based uncertainty reductions. 

There are no commercial software packages that execute anticipatory LCA computations.  

Rather, existing studies have been supported by custom software solutions, typically developed 

within academic or government research groups.  Among the most sophisticated of these is 

called FELCI, developed by the US Army Corp of Engineers Engineer Research & Development 

Center (ERDC).  Programmed in the language R, FELCI calls on a popular open-source Excel-

based software model called USEtox made available thru usetox.org by the Technical University 

of Denmark (Fantke et al. 2017). 

USEtox represents the state-of-the-art model for estimating characterization factors of unknown 

compounds, such as nano-structured materials.  However, USEtox relies on point estimates, 

rather than probability distributions.  FELCI operates by populating USEtox with information 

about uncertainty, simulating hundreds or thousands of Monte Carlo trials, collecting the output 

data from USEtox, and integrating it with research cost information supplied by expert users to 

graphically explore efficient frontiers between budget and hypothetical uncertainty reductions.  

Thus, FELCI may be a powerful tool for evaluating competing research agendas. 

The current challenge facing FELCI users is the long computational time required to run multiple 

Monte Carlo trials, which presents an obstacle to testing different research scenarios.  This 

project investigated the computational bottlenecks associated with FELCI and reprogrammed a 

new version in Python called PyFELCI that is computationally more efficient.  Despite faster 

speeds resulting from multi-core processing, PyFELCI operates in the same way as FELCI – as 

an external shell for controlling USETox and collecting data output.  Therefore, it is subject to 

the same computational bottlenecks – namely, read/write latency and execution of the extensive 

Excel macros on which USETox relies.   



There are Excel plug-ins that speed Monte Carlo and uncertainty analysis.  For example, Oracle 

provides a plug-in called Crystal Ball, that carries out rapid exploration of probability distribution 

functions.  However, implementing Excel plug-ins to execute USEtox is problematic for two 

reasons: 1) the extensive macros on which USEtox depends make plug-ins like Crystal Ball 

impractical, and 2) security concerns related to plug-ins prohibit use in enterprise computing 

environments like the Department of Defense and public universities. 

This project has developed a Python-based code called PyFELCI. To foster adoption and 

further development of new tools for advancing and automating methods of anticipatory LCA, 

PyFELCI can be made freely downloadable and open source in two versions: 1) a US Army 

Corp ERDC version available on a secure file-sharing server approved for DoD use, and 2) a 

public version hosted on a box.com server open to anyone with the link. 

Installation instructions for the public version are listed in Appendix A.  

 

Introduction 

The effective deployment of nanomaterial-enabled technologies could enable breakthroughs in 

energy storage, communications, environmental treatment, and myriad other technologies.  

Nonetheless, the potential application of nanomaterials must be weighed against the potential 

implications, because the environmental uncertainties associated with nanomaterials are 

extraordinarily high.  In particular, the characterization factors required by LCA that translate 

environmental releases to impacts are largely unknown for novel nanomaterials, and these 

unknowns can create considerable uncertainty that is expensive to resolve using traditional 

laboratory toxicological assays. 

 

Recent advances in anticipatory life cycle assessment (LCA) have enabled researchers to 

identify opportunities to steer the developmental trajectory of nanomaterial technologies towards 

environmentally preferable pathways by exploring and prioritizing uncertainties in environmental 

assessment (e.g., van der Giesen, Coen, et al. 2020).  For example, USEtox is an Excel-based 

program that estimates characterization factors from physio-chemical quantities  -- e.g., octanol-

water partition coefficients.  However, USEtox works exclusively with point-estimates, thereby 

complicating exploration of uncertainty and frustrating global sensitivity analysis. 

 

To overcome limitations of USEtox for identifying critical uncertainties and sensitivities, 

researchers at ERDC created a computer program in R called FELCI to automate Monte Carlo 

analysis by populating multiple instances of USEtox with samplings from user-specified 

probability distributions of uncertain physio-chemical parameters.  Ideally, this exploration allows 

identification of those uncertainties that are most relevant to a broader LCA, so that they might 

be prioritized for experimental investigation. 

 

The problem is that FELCI is computationally inefficient.  It requires long run times to create the 

minimum number of simulations required for informative exploration of typical probability 

distributions.  Although Excel-add-ons like Crystal Ball can speed Monte Carlo simulation in 

simpler spreadsheets, USEtox makes extensive use of macros that interfere with simulations, 

and complicate export of data for production of custom figures utilized in FELCI. 

 



This document describes the PyFELCI software tools designed to speed computations essential 

for anticipatory LCA.  These tools are made available in two locations: 1) A Python application 

called PyFELCI suitable for installation on USACE ERDC computers that applies multi-core 

processing to speed execution of Monte Carlo trials in USEtox and made available on DoD 

approved file sharing servers, and 2) a second copy posted on publicly accessible servers 

hosted by box.com. 

 

PyFELCI Testing 
To reduce the time taken for simulations, a multiprocessing Python application that reconstructs 

the ERDC software called FELCI (originally written in R) has been developed under a 

cooperative agreement between ASU and ERDC. This new application, called PyFELCI, uses 

multiple instances of USEtox running in parallel to deploy unused computational resources, and 

then merges the results of all the parallel simulations. The advantages of this multiprocessing 

approach depend upon the specific of each machine, including number of cores. For example, 

experimenting on a machine with 8 cores reveals that dedicating 6 cores to USEtox captures all 

available time savings.  

Objective 

The objective of this report is to show that PyFELCI application delivers same results as of 

FELCI application in less time. 

Procedure 

The Python application (PyFELCI) is tested against the original FELCI using identical inputs, in 

two scenarios: 1) a default input vector, and 2) randomly selected input values.  The 

computation times and graphical results are then compared to assess consistency.  For this 

purpose, several experiments were executed and typical results reported here.  

PyFELCI Time Performance 

Time utilization for 100 simulations: 

# USEtox 

Instance 

Total Time 

(min) 

Time per sim 

(sec) 

Note 

4 26.65 15.99 Slow 

6 24.45 14.67 Decent time: balance of time and resource 

utilization 

8 24.43 14.65 Better time, but heavy resource utilization 

Note: Actual FELCI takes 30.18 min for 100 simulations 

Machine specs: intel - i7 core, 1.80GHz, 16 GB of RAM, 500GB SSD. 

Results 

To compare the results, the graphs produced in the results folder by both applications for each 

experiment are displayed below. The pattern observed was similar in all the graphs, even 

though a difference in scale could be found between them.  Small differences between the 

results generated by FELCI and PyFELCI result from differences in stochastic sampling of 

identical probability distributions.  Reliable results of 100 simulations show comparable overall 

patterns, without replicating exact datasets. 

 



Direct comparison using identical default inputs  

Value of Information Analysis.  FELCI adds capabilities for prioritizing research projects that 

are not embedded in USEtox.  The first of these is value-of-informaton (VOI) analysis that seeks 

to narrow uncertainty of results through experimental research that is hypothesized to decrease 

the range of probability distributons.  Research experiments that are highest priority are those 

that are hypothesized to reduce uncertainties the most (e.g., Wender et al. 2018).  Because the 

propogation of data uncertainties through life cycle assessment models like USEtox is complex, 

Monte Carlo simulation is necessary to inform experts regarding which experiments are most 

efficient for increasing confidence in the overall environmental portential of new technologies.  In 

the figures below, FELCI results are on the left and PyFELCI results are on the right.  Using 

identical inputs, the graphs show the same overall pattern of result, and identify comparable 

efficiency frontiers. 

 

 

Figure 1. FELCI results (left) and PyFELCI (right) display comparable value-of-information results. 



Research Portfolio Rankings.  Because research is an inherently uncertain process, 

prioritizing among different projects requires direct comparison of the value of proposed 

projects.  Highest ranked projects are those likely to generate efficient increases in information.  

FELCI (left) displays a stack-ranking of research project preferences, and their stability as the 

number of Monte Carlo trials increases.  PyFELCI results in comparable rank-orderings, with 

improving comparison at larger numbers of simulations.  

 

 

 

Figure 2.  FELCI results (left) and comparable to PyFELCI results (right) in stack-ranking hypothetical research 

portfolios. 

  



Figure 2 establishes the stability of the optimal research porfolio rankings at different numbers 

of Monte Carlo simulations.  The portfolios represent different combinations of experimental test 

results that narrow uncertainty in the physical parameters that constitute USETox inputs.  

Optimal portfolios (top row) are those represented by red dots in Figure 1.  These are the 

experimental tests that lie along frontier of least mean error and least additional testing costs.  

The bottom row of Figure 2 depicts all dots – white and red – represented in Figure 1. 

Evaluating the stability of the research portfolio rankings allows assessment of the minimum 

number of simulations necessary to reach reliable results.  Because of the nature of Monte 

Carlo sampling, random variations will fail to produce reliable results when the number of 

samplings is too low.  In this case, the critical output is the relative ranking of the research 

portfolios, rather than the mean error estimated for each. As a consequence, stable results in 

relative ranking can be obtained with fewer simulations than might otherwise be necessary for 

results to converge on absolute estimates of mean error.  In the example given in Figure 2, the 

top three research portfolios are identifiable in fewer than 5 simulations, obviating the need to 

expend additional time and computational resources to compute additional simulations.  Thus, 

much faster results can be obtained with confidence when the minimum number of simulations 

is established by the results depicted in Figure 2.  

 

Direct comparison using identical randomly selected inputs 

While comparison of FELCI and PyFELCI yields good results using a vector of default inputs 

(previous section), to investigate whether good comparison is stable over a wider range of input 

parameters, we compared results using randomly selected inputs. 

Value of information.  In Figure 3 below, FELCI results are on the left, while PyFELCI are 

reported on the right. Differences in scale distort visual interpretations of the results.  

Nonetheless, the same efficient frontier emerges in both instances, showing that optimal 

experiments exhibit decreasing returns in uncertainty reductions, with respec to increasing 

costs. 

   



 

Figure 3. Randomly selected input vectors reveal that comparable results are robust across a wide range of 

parameters. FELCI results on the left, PyFELCI on the right. 

Research Portfolio Rankings.  Stable research portfolio rankings emerge between 20-30 

simulations in both FELCI (left) and PyFELCI (right).   

 



  

 

Figure 4. Using randomly selected input vectors, direct comparison of FELCI (left) and PyFELCI (right) results in 

comparable and stable research portfolio rankings after approximately 30 simulations.  

 

PyFELCI Conclusions 

PyFELCI delivers results comparable to FELCI in 30% less computational time. 
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Case Study 1: Niacinamide  

Among the first studies to employ Monte Carlo exploration of data uncertainties in USETox for 

the estimation of characterization factors in environmental life cycle assessment (LCA) of novel 

materials is Wender et al. (2018).  Their approach identified critical contributors to uncertainty in 

the aquatic ecotoxicity characterization factors for niacinamide, a topical antioxidant, by 

automating Monte Carlo sampling of uncertain chemical parameters from user-defined 

probability distribution functions, and aggregating the USETox results.  Comparative 

examination of Spearman rank correlations between sampled input parameters and variation in 

the resulting characterization factors allowed identification of those input uncertainties that make 

the greatest contribution to eventual uncertainty in the USETox results.  Thus, the Wender et al. 

study established a scientific basis for prioritizing new research for reducing uncertainties in 

LCA of novel materials. 

Although the Wender et al. study was an important intellectual antecedent to FELCI, it did not 

consider experimental costs.  The principal contribution of the FELCI software was to add two 

additional dimensions to evaluation of research portfolios (i.e., combinations of experiment): 1) 

cost, and 2) BA level.  With FELCI, research managers can explore the frontier of optimal trade-

offs between scientific merit (measured by reduction of uncertainty) and experimental cost.  

Finally, the principal contribution of PyFELCI is to speed the same computations made by 

FELCI by enabling multi-core processing capabilities in Python.  The additional speed, along 

with progress bars that estimate total time to completion, allow research managers to iterate on 

different scenarios or ideas, using the results of one run to inform the direction of new 

explorations. 

To demonstrate the utility of PyFELCI and facilitate its use in new applications, this case study 

provides step-by-step instructions that recreate the niacinamide example, so that users can test 

their understanding of PyFELCI input and output screens prior to designing their own 

investigations. 

Operating PyFELCI for Niacinamide 

Open PyFELCI 

 

Figure 5. To run PyFELCI, double click the pyfelci_run batch file.  

After installing PyFELCI (see Appendix A), open the pyfelci_run batch file found in the ‘>Server’ 

subdirectory (Figure 5). 

 



Values 

 

Figure 6. Known chemical characteristics for niacinamide are entered as point estimates in the PyFELCI Chemical 

tab, leaving other values blank. 

There are several chemical characteristics of niacinamide that are known, such as molecular 

weight.  Enter the known chemical characteristics in the PyFELCI ‘Values’ tab, as show in 

Figure 6.  Leave unknown values blank.  These will be specified on the ‘Distributions’ tab. 

  



Distributions  

  

Figure 7. Specify unknown chemical characteristics as probability density functions using the ‘Distributions’ tab. 

Unknown chemical characteristics must be entered as probability density functions (PDF).  

PyFELCI allows a variety of different PDF shapes, including uniform, triangular, normal, and log-

normal. 

For each unknown parameter, specify the shape of the PDF and the parameters that 

characterize that shape. For example, in the screen below, nothing is known about the pKa 

characteristics of niacinamide.  Therefore, the shape of the PDF selected is uniform.  Minimum 

and maximum values are specified as 0 and 14, respectively, because these represent the 

extreme limits of possible pKa values.  In this case, the uncertainty in pKa is extreme. 

By contrast, other PDFs are specified as lognormal, and parameterized with the mean and 

standard deviation of the log of the PDF. 

Cost 

 

Figure 8. Enter the cost to experimentally determine more precise estimates of the uncertain chemical 

characteristics. 

In this example, we have no special insight into the experimental cost of determining more 

precise values of the unknown values.  Although the unique contribution of PyFELCI is its ability 

to compare the value of experimental information with its experimental cost, the arbitrary values 

we input into PyFELCI in this example serve only to illustrate this capacity.  Users may input 

their own values, and interpret the results accordingly.  Note that the only prompts on the ‘Cost’ 

tab (Figure 8) are those that were specified earlier as probability distributions, as known point 

values specified on the ‘Values’ tab require no further experimental investment. 

 



BA Level 

 

Figure 9. Enter any other numerical prioritization levels on the ‘BA Level’ tab. 

Because cost may not be the only system of determining experimental priorities, PyFELCI 

allows a second approach to investigating value of information tradeoffs on the ‘BA Level’ tab 

(Figure 9).  The units allowable on this screen accommodate any numerical scale the user 

applies, although in this example we will not revisit the BA Level during consideration of the 

results. 

Budget 

 

Figure 10. Enter a total experimental budget on the ‘Budget’ tab. 

One of the advantages of PyFELCI is its capacity to compare accumulated costs of various 

experimental combinations (called ‘research portfolios’) to an overall budget number (Figure 

10), facilitating optimal investment of available funds.  Additionally, PyFELCI will show any gains 

in value of information that are available at expenditure levels above the specified figure, which 

may fortify internal arguments for upward budget adjustments where larges gains in information 

can be had. 

Run (Simulations) 

 

Figure 11. Enter an integer corresponding to the number of Monte Carlo simulations to run in USETox.    

PyFELCI allows users to specify the number of simulations to explore within USTETox.  A larger 

number of simulations will take longer to run, but result in more stable results (with fewer 

random variations).  In this example (Figure 11), we run only 10 simulations to minimize 

computation time.  Later, we can check for stability of the results in the ranking of the research 

portfolios after only 10 simulations and decide to rerun results at fewer or more simulations. 

  



Run-time feedback 

 

Figure 12. The operations of the pyfelci_run batch files are printed in a command dialog box to facilitate 

troubleshooting.  Under ordinary circumstances, these dialog boxes can be ignored. 

PyFELCI adds several indicators of progress that were absent in FELCI, including a command 

line dialog bopx (Figure 12) and different representations of progress bars.  These assist the 

user in planning their time during longer runs requiring additional simulations. 

Value of Information Outputs 

 

Figure 13. Value of information results are presented in two ways.  The first (left) compares reduction in uncertainties 

relative to the total number of experiments required, while the second (right) compares to the cost of experiments. 



The value of information results for niacinamide are presented relative to the number of 

experiments required to reduce uncertainty (Figure 13, left) and the cost of those experiments 

(Figure 13, right).  The red dots represent the frontier of optimal (i.e., “non-dominated”) choices. 

In this case, just one experiment reduces uncertainty, as measured by the mean error of the 

resulting distribution of characterization factors produced by USETox, by more than a third, and 

two experiments result in near certainty.  No further benefit is derived from three experiments, 

as error has already been so greatly reduced.  Moreover, the recommended experiments can 

be accomplished for far less than the budget available. 

Stability 

  

Figure 14. PyFELCI represents the stability of rankings in two ways.  On the left are the rankings of all possible 

combinations of experiments (i.e., research portfolios), including sub-optimal (or dominated) choices.  On the right, 

the sub-optimal portfolios are removed to show the stability of just the non-dominated options represented by red 

dots in the Value of Information graphs. 

The nature of Monte Carlo sampling introduces the possibility that results are an artifact of 

random sampling, rather than a robust and reliable representation of uncertainty.  As the 

number of simulations increases, both computational requirements and reliability of results 

increase – to a point.  After reliability is already established, additional simulations only 

lengthens run times.  Therefore, it is advantageous to run the fewest number of simulations that 

yield reliable results.  Fortunately, the absolute estimates of mean error are unimportant 

compared to the relative ranking of the research portfolios. Because relative ranking can be 

established in fewer simulations than reliable estimates of mean error, PyFELCI can operate 

well with fewer simulations than is typical of most Monte Carlo simulations – speeding the time 

to obtain results.  In this case, the top two research portfolios are reliably established in the first 

simulation, and remain constant even as the simulations increase.  The correct inference is that 

the results in Figure 13 are reliable and repeatable, and no further simulations are required to 

minimize random samplings errors. 

 

 

 



Recommendations 

 

Figure 14. The recommended experiments are tabulated in combinations called research portfolios.  The columns 

correspond to the experimental investigations, wherein a value of “1” indicates that the experiment in that column 

belongs to the research portfolio in that row.  In this case, the optimal combination of two experiments is research 

portfolio #7, which combines testing for pKa.gain and pKa.loss.  Adding Kdoc to the portfolio (#8) results in a 

miniscule improvement in mean error. 

While the red dots represent the optimal frontier identifying the experimental combinations that 

most reduce uncertainty for least cost, the figures alone do not name the experiments.  To 

extract recommendations from the results, it is necessary to interpret the data tabulated in 

Figure 14. 

Each column represents an experimental investigation.  PyFELCI constructs portfolios by 

testing the experiments individually, and in combination.  For example, portfolio #1 shows the 

uncertainty without any new experimental investigations, and #2 presents the Mean Error 

results when only Kdoc is established experimentally.  In this case, the reduction to Mean Error 

is miniscule when Kdoc is investigated alone.   

A value of “1.0” under the column header corresponding to each experiment indicates that 

experiment is included in the research portfolio corresponding to that row, whereas a value of 

“0.0” indicates that it is excluded. 

Hypothetically, the massive uncertainty in pKa.gain and pKa.loss, originally entered in the 

‘Distribution’ tab as a uniform distribution between 0 and 14 could be determined experimentally 

in the lab.  These results indicate that these pKa parameters are the principal contributor to 

uncertainty in the characterization factor for niacinamide estimated by USETox, and that 

research portfolio #7 that combines testing of both pKa.gain and pKa.loss results in a massive 

reduction of Mean Error and a cost of $11,000.  

 

 

 

 

 

 

 

 



Case Study 2: Carbon Nanotubes 

Nanomaterials are among the most vexing to assess from an environmental life-cycle 

perspective.  The wide variety of chemical and structural alternatives available makes possible a 

myriad of unique materials that may perform in surprising ways.  Therefore, it may be 

advantageous to employ USETox via PyFELCI to prioritize new experimental investigations 

when developing novel nanomaterials.   

The second case study investigates carbon nanotube characterization factors, following the 

examples given by Eckelman et al. (2012). 

Open PyFELCI in the same way as the previous case study. 

Values 

 

 

Figure 15. Enter known information in the ‘Values’ tab.  The carbon nanotube case study involves less known 

information than niacinamide, which means that there are additional blanks to fill in as distributions on the next 

screen. 

 

  



Distributions 

 

Figure 16. Unknown chemical characteristics are specified as probability density functions on the ‘Distributions’ tab.  

The pKa.gain and pKa.loss are given as uniform distributions, while all others are specified as log normal, from 

values given in Eckelmen et al. (2012). 

Cost 

 

Figure 17. Enter the estimated cost of laboratory determination of unknown chemical characteristics. 

 

 

  



BA Level 

 

Figure 18. As in the niacinamide case study, BA Levels refer to internal, non-budgetary priorities.  The values listed 

here are arbitrary. 

Budget 

 

Figure 19. Enter a total laboratory experimental budget, to facilitate planning. 

Run (Simulations) 

 

Figure 20. Enter 10 simulations to speed computations, then check the results for stability when PyFELCI is 

complete. 

Run-time feedback 

 

Figure 21. PyFELCI provides runtime information in an open dialog box, as well as two types of progress bars. 

 

 

 



Value of Information Outputs 

 

Figure 22. Compared to the niacinamide case study, the CNT case study results are more complicated, due to the 

greater number of unknowns.   

Results in Figure 22 (left) indicate that proper selection of just one experiment results in a 75% 

reduction in mean error, as evidenced by the red dot corresponding to the point (1, 1000).  

Several inferior options are also available, some of which fail to reduce error at all.  Both value 

of information representations show that optimal selection of experimental effort will conserve 

resources, and that diminishing returns exist after about 3 or 4 experiments. 

Stability 

 

Figure 23. The first two research portfolio rankings are stable for all simulations, 1-10.  However, some rank reversal 

is evident in the third or fourth best research portfolios (right) represented by red dots in Figure 22. 

 

 

 



Recommendations 

 



 

Figure 24. Over one hundred different research portfolios are tested in the CNT case study.  

In the CNT case, large reductions in uncertainty can be obtained from four or fewer 

experimental results, after which diminishing returns set in. Inspection of the ‘Frontier Cost’ 

column guides the reader towards those portfolios that lie along the optimum information/cost 

frontier, which are indicated with a “1”.  For example, research portfolio #4 (line 29, Figure 24) 

tests only Kdoc and avglogEC50, and obtains over 80% of available error reduction.  Adding 

pKa.gain and pKa.loss (research portfolio #100, line 97 in Figure 24) further reduces errors to 

the point at which they can hardly be reduced further. 

  



 

APPENDIX A 

PyFELCI Installation & Testing Instructions 

Introduction 

The PyFELCI tool is developed in Python and uses an open-source framework WinPython to 

make it a portable application. 

To prepare your machine to run PyFELCI, first close all instances of Excel. Other open 

workbooks may interfere with the running of USEtox. 

Step-by-Step Instructions: 

1) Download the PyFELCI.rar file from box.com at: 

https://app.box.com/file/808401523528?s=2sl7iqq7f8udt02agi5os1e1prq1krjc 

2) Extract the folder file PyFELCI (suggested software: WinRARhttps://www.win-

rar.com/download.html?&L=0)  

3) Go to folder FELCI -> Server 

4) Double click on the pyfelci_run.bat file.  

5) Then open http://127.0.0.1:5000/ either on Google Chrome or Microsoft Edge. (This was 

successfully tested on both). 

6) Fill each tab with the appropriate values and then start the simulations. In the below 

steps we see an example run for 100 simulations. Fill the below values in each tab. 

7) Chemical Tab: select “Organic” for Chem Type 1 and “Amphoter” for Chem Type 2. 

Then press Next. 

 

 
 

8) Values Tab: PyFELCI does not have the ability to deliver error messages when values 

are entered incorrectly. For this reason, it is important to input values in a format that can 

be parsed by Excel. For instance, “E” notation will work. That is, if the user wishes to 

efficiently input 1.25x1019, the user could enter 1.25E19. Invalid syntax in data entry will 

cause the USEtox Excel spreadsheet to stop working with no error function passed to 

the user and the computer will most likely need to be restarted for the app to function 

properly. For instance, the following values will successfully be interpreted by the app: 

  

http://127.0.0.1:5000/


 

Parameter Input Value 

mw 10000 

pKa.gain 7.2 

pKa.loss No input value 

Kow 10000 

Koc No input value 

Kh25c 1.00E-07 

Pvap25 No input value 

Sol25 1.00E+05 

Kdoc 200 

kdegA No input value 

kdegW 1.00E-15 

kdegSd 1.00E-18 

kdegSI No input value 

avlogEC50 0.5 

  

 

  



9) Distributions Tab: Accept the 5 defaults without making any changes. 

 
10) Costs Tab: Accept the 5 defaults without making any changes. 

 

11) BA Level Tab: Accept the 5 defaults without making any changes. 

 

  



12) Budget Tab: Input 40000, which ends up being about 75% of the total cost of testing all 

unknowns.  

 
 

13) Run Tab: To finish this example, the user then clicks to the final <Run> tab, leaves it on 

100 simulations, and presses “Run VOI Analysis”. 

 

 

Saving Results 

Completing all simulations may require 20 seconds per simulation or more.  For example, 1000 

simulations may require 20,000 seconds, or between five and six hours.  After completing all the 

simulations, the results will pop up on your screen and be saved to a folder: PyFELCI->FELCI-

>Server->app->results.  

On computers that do not allow creation of new folders, the plots that appear at the end of the 

simulations will show up as pop-up windows so that users may save them in the location of 

choice. These plots would include: 

• Vol Portfolio Analysis (USEtox Uncertainty vs Additional Tests Performed)  

• Vol Portfolio Analysis (USEtox Uncertainty vs Cost of Additional Testing) 

• Ranking – All Portfolios (Ranking vs Simulations) 

• Ranking – Optimal Testing Portfolios (Ranking vs Simulations) 

 

 

 


